Newton's interpolation for a given set of points is interpolating them to a polynomial. For a given number of points “N” the degree of the resulting polynomial will be “N-1”.
And here you are some snapshots
The following Scilab code is used for this interpolation method
And here you are some snapshots
The following Scilab code is used for this interpolation method
//This tool box is not working right for 4 points or less
labels=["Independent variable name"];
[ok,name]=getvalue("Enter the independent variable name (i.e., x, w, Shady)",labels,...
list("str",-1),["x"]);
//Generating array of random numbers (two columns width)
array=rand(10,2);
editvar array;
//don't copy and paste the following lines till you edit the array
x=array(:,1); y=array(:,2);
lst=list(x,y);
for m=1:max(size(x))-2,
n=1:max(size(x))-m;
c=(lst(m+1)(n+1)-lst(m+1)(n))./(lst(1)(m+n)-lst(1)(n));
lst(m+2)=c;end;
//Defining a protected variable "s"
s=%s;
pol=0;
for m=3:max(size(x)),
mat=1;
for n=1:m-2,
a=s-lst(1)(n);
mat=a*mat;
end;
c=mat*lst(m)(1);
pol=pol+c;
end;
pol=pol+lst(2)(1);
varn(pol,name) //Show the polynomial "pol"
|